VPR Series

Vacuum Circuit Breakers

GLOBAL IMPACT OF MITSUBISHI ELECTRIC

nrough Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

We bring together the best minds create the best technologies. A Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximiz ing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better

Mitsubishi Electric is involved in many areas including the following
Energy and Electric Systems
A wide range of power and electrical products from generators to large-scale displays.
Electronic Devices
A wide portfolio of cutting-edge semiconductor devices for systems and products.
Home Appliance
Dependable consumer products like air conditioners and home entertainment systems

Information and Communication Systems
Commercial and consumer-centric equipment, products and systems.
Industrial Automation Systems
Maximizing productivity and efficiency with cutting-edge automation technology.

OVERVIEW

FEATURES3
CONSTRUCTION 5
TYPE SELECTION 7
RATINGS 9
EXTERNAL DIMENSIONS 11
CONNECTION DIAGRAMS 33
ACCESSORIES 37
OPTIONAL ACCESSORIES 39
RELEVANT DEVICES 49
INTERLOCKING PROCESS FOR THE PANEL DOOR WHEN USING WITHDRAWABLE WITH DOOR CLOSED(TYPE-M) OPERATION MECHANISM 54
TECHNICAL INFORMATION 55
APPLICABLE STANDARD 59
ORDERING INFORMATION 65

VPR series

High Levels of Reliability and Safety
Achieved Through Use of the
Latest Technologies Vacuum Circuit Breakers
Designed for the Future
with Enhanced Environmental Measures and Maintenance Features.

10-VPR-D Series

Outstanding Reliability

Olncorporates Mitsubishi Electric vacuum interrupter technology, realizing a more compact vacuum interrupter (VI) 16% smaller than in the previous type* and high reliability (class E2). -Self-cooling vacuum circuit breakers (VCBs) that do not require a fan to be mounted on the panel. Available in a wide range, from rated current of 600 to $3,150 \mathrm{~A}$.
-Compliant with IEC 62271-100-2012 and has passed type tests for classes M2, E2 and C2, which represent the highest levels of quality
The VI in 10 -VPR-32D ($1,250 \mathrm{~A}$

High-level Safety

- Exposure of live parts in the main circuit has been minimized even in VCBs with a $3,150 \mathrm{~A}$ rating. This enhances safety through prevention of potential hazards such as short circuits caused by intrusion of small animals.

Simple Maintenance

-The mechanical parts are coated with a long-life grease that contributes to the prevention of oxidation degradation and oilless bearings has been adopted for the bearing section of latch, thus extending the lubrication cycle to mechanical parts from three to six years and reducing the time required for maintenance.

- Includes a new withdrawable with door closed* (in addition to the conventional lever-based insert/draw-out mechanism) with cam-slide mechanism that reduces operating effort, saves time and enhances VCB safety.
Mechanism used to insert/draw-out the circuit breaker from the external panel based on IEC 62271-200 switchgear standards.
Enhanced options including additional auxiliary switch and earthing switch.
- VCB with the rated normal current up to $3,150 \mathrm{~A}$ is transported together with a panel by shipping clamps.
Compatibility with mounting frame of previous 10-VPR-C Series (positions of mounting holes, terminals and partitions are the same).

Pursuit of Environmental Design

-No use of the six hazardous substances (mercury, cadmium, lead, hexavalent chromium, PBB and PBDE), a measure that exceeds the requirements of RoHS standards. One example is use of a rust-proofing treatment for small parts such as pins and screws that is free of hexavalent chromium, a substance known to contaminate soil.
-Marking of main resin materials to facilitate recycling.

3/6-VPR-D Series

Simple Maintenance

The mechanical parts are coated with a long-life grease that contributes to the prevention of oxidation degradation and oilless bearings has been adopted for the bearing section of latch, thus extending the lubrication cycle to mechanical parts from three to six years and reducing the time required for maintenance.

Pursuit of Environmental Design

ONo use of the six hazardous substances (mercury, cadmium, lead, hexavalent chromium, PBB and PBDE), a measure that exceeds the requirements of RoHS standards. One example is use of a rust-proofing treatment for small parts such as pins and screws that is free of
hexavalent chromium, a substance known to contaminate soil.
-Marking of main resin materials to facilitate recycling.

10-VPR-50C(D) 4000A

Outstanding Reliability

Enabling a self-cooling mechanism with 4000A rated normal current without cooling fans.

20-VPR-D Series

Pursuit of Quality to the Limit

- Vacuum Interrupter
- Pursuit of high breaking performance and high electric strength performance by applying efficient contact material.
- Pursuit of the optimum structural design by application of the most advanced arc control technology and insulation design technology.
- Pursuit of improvement in magnetic drive efficiency by spiral contact.

Operation mechanism

The conventional $\mathrm{BH}-1 \mathrm{H}$ type operation mechanism is further advanced, and operation stability is pursued Py simple operation principle confirmed by motion analysis technology and stress analysis technology, etc.
years of thaintenance cost reduction by extending the operation mechanism inspection interval from 3 years of the type VPR-C to 6 years by adopting long life grease.
Pursuit of convenience by attempting to use the same motor for charging the closing spring for both AC and DC power sources.

- Pursuit of heat generation reduction of the main circuit by application of electric resistance welding on the shunt part and reducing the contact resistance
Pursuit of contact stability by adopting 2-point contact structure by forging the primary junction.

Pursuit of Safety and Reliability

- Pursuit of safety by applying withdrawable with door closed operation mechanism, metal shutter and earthing switch.
- Pursuit of safety and environment by adopting excellent molding material in tracking.
- Pursuit of minimization of live outcrop which makes good use of bulk mold compound molding technique, and was proven by heat analysis technology.

Pursuit of Environmental Design

- No use of the six hazardous substances (mercury, cadmium, lead, hexavalent chromium, PBB and PBDE), a measure that exceeds the requirements of RoHS standards.* One example is use of a rust-proofing treatment for small parts such as pins and screws that is free of hexavalent chromium, a substance known to contaminate soil.
※Except 2500 A and fixed (type L)
- Marking of main resin materials to facilitate recycling.

Cutting-edge Technologies Using 3D CAD and CAE to Ensure the Utmost Levels of Reliability and Safety

1. vCB Structure (10-VPR-D)

-Through use of thermal fluid analysis, we have realized efficient release of heat to the cylinder-shaped insulation frame covering the VCB main circuit part, enabling a self-cooling mechanism up to a rated current of 3150 A .
-Compound insulation of insulated parts and air has been optimized through analysis and testing, resulting in a basic impulse level (BIL) up to 95 kV , yet at a size equivalent to the previous 10-VPR-C Series

- Materials with superior tracking resistance have been adopted and a cylindrical shape realized through stress analysis of the insulation frame and cutting-edge molding technology.
Olmproved safety through insulation of live parts to prevent short circuits caused by intrusion of sma animals

Fig. 1 Example of thermal fluid analysis.

2. Vacuum Interrupter (VI)

- VIs with even higher reliability through utilization of computer-aided engineering (CAE) technology and backed by record of manufacturing 4.6 million*1 VIs in over 50 years of manufacturing experience that has seen us capture the top share of the market in Japan In addition to adopting spiral contacts, improvements in contact materials, and tests utilizing lectromagnetic analysis and arc behavio observations have realized a 16% size reduction compared to the VI in the previous 10-VPR-32D type. *1 As of 2018

Optical Observation for Arc Behavior

Arc behavior was observed via a high-speed
camera at the time of interruption between th camera at the time of interruption be
fixed and moving contacts (see Fig. 4).

Fig. 4 Observation of arc behavior in an internal VI.

Current flows along the spiral electrode causing a radial magnetic field which generates an
electromagnetic force circumferentially towards the contacts. This results in arcs that rotate circumferentially on the contact surface.

3. Operating Mechanism (10-VPR-D)

- Greater performance reliability and extension of the lubrication cycle from three to six years through measures for the operating mechanism such as minimizing the number of parts, reducing the number of moving parts, adopting oilless bearings and use of a long-life grease
-More reliable distribution of operating friction (which, due to the addition of a spring load, is difficult to verify/evaluate) has been achieved thanks to utilization of a three-dimensional mechanical simulation used to switch operation from the operating mechanism to a VI contact.

10-VPR-25D (M)

10-VPR-50C (D)

20-VPR-D 2500A

[^0]
In additon, fixed (type-L) with the rated voltage 15 KV BLL. 95 KV cannot be manutactured.
$\times 4$ Low surge types are only avaliable for 63012 250 of of 36 -VPR VCBS
$\times 5$ ixed (type-L) with rated current of 2000 A canno be manufactured.

4 Ratings

3 Auxiliary switches are available up to $10 a 100$ by adding 5555 .
In additon, when selecting additional shunt tripping coil tron optional accessories the switches are 3 3abb and will be 8 8a8b by adding 595 .
55 Fixed (type L) for the raled voltage 15kV BLL.S5KV cannot be manuactured.

\& Fixed (typer Li) is 1 ECG62271-1-100 (2006)
99 Fixed (type L) tor the re rated current of 2000 A cannot be manufacture

■ 3/6-VPR-20D, 3/6-VPR-25D 630A Rating External Dimensions (Circuit Breaker)

Fixed (type-L)

■ 3/6-VPR-20D, 3/6-VPR-25D 630A Rating External Dimensions (Mounting Frame)

■ 3/6-VPR-20D, 3/6-VPR-25D 1250A Rating External Dimensions (Circuit Breaker)

Fixed (type-L)

■ 3/6-VPR-20D, 3/6-VPR-25D 630A Rating External Dimensions (Mounting Frame)

Class PW (type-D)

Fig. 13

■ 10－VPR－25D（M）600A／630A，1200A／1250A Rating External Dimensions（Circuit Breaker） Withdrawable with door open（types－C，D and G ）

■10－VPR－25D（M）600A／630A，1200A／1250A Rating External Dimensions（Mounting Frame）

Class CW（type－c）

Fig． 15

Classes PW and MW（types－D and G）

Fig． 16

■10-VPR-D 600A/630A, 1200A/1250A Rating : External Dimensions (Circuit Breaker)

■ 10/15-VPR-D 600A/630A, 1200A/1250A Rating: External Dimensions (Circuit Breaker) Withdrawable with door closed (type-M)

-10/15-VPR-D 600A/630A, 1200A/1250A Rating : External Dimensions (Mounting Frame)

Classes PW and MW (types M, D and G)

■10-VPR-D 1600A, 2000A Rating : External Dimensions (Circuit Breaker)

10/15-VPR-D 1600A, 2000A Rating: External Dimensions (Circuit Breaker)

■10/15-VPR-D 1600A, 2000A Rating : External Dimensions (Mounting Frame)

Classes PW and MW (types M, D and G)

■10-VPR-D 2500A, 3000A/3150A Rating : External Dimensions (Circuit Breaker)

Withdrawable with door closed (type-M)

■10-VPR-D 2500A, 3000A/3150A Rating: External Dimensions (Mounting Frame)

Classes PW and MW (types M, D and G)

■10-VPR50C(D) 4000A Rating External Dimensions (Circuit Breaker)

■ 10-VPR50C(D) 4000A Rating External Dimensions (Mounting Frame)

Fig. 30

20-VPR-D

■ 20-VPR-D 630A, 1250A Rating External Dimensions (Circuit Breaker)

Withdrawable with door closed (type-M)

Withdrawable with door open (types C, D and G)

Fig. 32

20-VPR-D

■ 20-VPR-D 630A, 1250A Rating External Dimensions (Mounting frame)

Class MW (types-M and G)

Classes CW and PW (types-C and D)

Fig. 35
Note: class CW : Shutter device is not equipped.

Description	High-voltage switchgear standards	
M	Withdrawable with door closed and mounting frame (class MW)	LSC2B-PM
G	Withdrawable with door open and mounting frame (class MW)	
D	Withdrawable with door open and mounting frame (class PW)	LSC2B-PI
C	Withdrawable with door open and mounting frame (class CW)	LSC1
Notes: $\mathrm{PM}:$ All partitions are provided metallic partitions and shutters. PI		

- 20-VPR-D 2000A Rating External Dimensions (Circuit Breaker)

Withdrawable with door closed (type-M)

■ 20-VPR-D 2000A Rating External Dimensions (Circuit Breaker)

Class MW (types-M and G)

Class CW and PW (types-C and D)

20-VPR-D

■ 20-VPR-D 2500A Rating External Dimensions (Circuit Breaker) Withdrawable with door open (types-C and D)

■ 20-VPR-D 2500A Rating External Dimensions (Mounting Frame)

6 Connection Diagrams (1)

3/6-VPR-20D/25D (630A, 1250A)
10-VPR-25D(M)
20-VPR-16D/25D (630A, 1250A, 2000A)

■10-VPR-50C (D)
Withdrawable : Standard connection diagram (AC•DC100~125V)

20-VPR-25D 2500A
Withdrawable : Standard connection diagram (AC•DC100~125V)


```
\in
LM:
```


$\left[\begin{array}{c}M \\ \text { co } \\ \text { s2X } \\ \text { s2X } \\ 52 a\end{array}\right.$

Fig. 43

6 Connection Diagrams (2)

■ 3/6/10/15-VPR-25D/32D/40D

Table 3 Accessories										
					10.VPR-25D (M)	10-VPR-D	10-VPR-50C(D)	15-VPR-D	20-VPR-D	20-VPR-D
Type	3-VPR-20D	3-VPR-25D	6-VPR-20D	6-VPR-25D	10-VPR-25D(M)	10-VPR-25D/32D/40D	10-VPR-50C (D)	15-VPR-25D/32D/40D	20-VPR-16D/25D	20-VPR-25D (2500A)
Secondary Connector	\bigcirc									
Manual Charging Handle	\bigcirc									
Insertion/Draw-out Handles	\bigcirc									
Lititing Adapter	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Shipping Clamp	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
Wipe Gauge	-	-	-	-	-	-	\bigcirc	-	-	\bigcirc
Sloped Platorm	-	-	-	-	-	-	-	-	\bigcirc	-

$■$ Secondary Connector (Lead wires 1.5 m)

■ Manual Charging Handle

This handle enables the closed spring to be charged manually by inserting the handle in the front manual charging handle aperture and rotating clockwise for Number of accessories:1 per 1-5 VCBs (min. 1)

Fig. 49
■ Insertion/Draw-out Handles

$■$ Lifting Adapter

■ Shipping Clamp (for 10-VPR-D series)

■ Wipe Gauge

A lifting adapter used to lift the VCB. Please refer to the directions for use in the instruction manual.
Number of accessories:
Fig. 51

For 10-VPR-50C(D)
Wheter the wipe quantity is within the allowable range or not can be judged using awipe gauge during in spection. Please use according to instruction manual. 1 per $1-5 \mathrm{VCBs}(\min 1)$

8 Optional Accessories

■ VCB Configuration

■ Mounting Frame Configuration

Closing spring charged indication switch (page 41)	Additional auxiliary switch (page 42)	Padlock device for close and trip button (page 42)	Short-circuit capacity earthing (page 45)
	Fig. 62	$\text { Fig. } 65$	
Mechanical locking device (page 41)	Addifional shunt tripping coil (page 42)	Position switch (page 43, 44)	Optional terminal (v: Veritala, H: Horizonal) (page 45)
	Fig. 63	Fig. 66	(Vertical) (Horizontal) Fig. 69
Tripping coil disconnection monitoring (page 41)	Draw-out mechanism paalock device (page 42)	Earthing switch (page 47, 48)	Shutter padlock device (page 46)
	Fig. 64		Fig. 70

Table 4 Optional Accessories

Table 4 Optional Accessories	3/6-VPR-D				10.VPR-25D(M)	10-VPR-D	10-VPR-50C(D)	15-VPR-D	20-VPR-D	20-VPR-D
Type	3-VPR-20D	3-VPR-25D	6-VPR-20D	6-VPR-25D	10-VPR-25D(M)	10-VPR-25D/32D/40D	10-VPR-50C (D)	15-VPR-25D/32D/40D	20-VPR-16D/25D	20-VPR-25D (2500A)
Low surge	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-
Closing spring charged indication switch	\bigcirc									
Mechanical locking device	-	-	-	-	-	\bigcirc	-	\bigcirc	-	-
Tripping coil disconnection monitoring	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-
Additional auxiliary switch	-	-	-	-	-	\bigcirc	-	\bigcirc	-	-
Additional shunt tripping coil	-	-	-	-	-	\bigcirc	-	\bigcirc	-	-
Draw-out mechanism padlock device	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
Padlock device for close and trip button	-	-	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
Position switch	\bigcirc	-								
Earthing switch	-	-	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
Shor-circuit capacity earthing	-	-	-	-	-	\bigcirc	-	\bigcirc	-	-
Optional terminal (V:Verrical, H:Horizontal)	-	-	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-
Shutter padlock device	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-

8 Optional Accessories (1)

■ Closing Spring Charged Indication Switch
Used for charging/discharging output of closing springs. The contact number is 1 C
Table 5 Contact ratings.

Rated voltage (V)	Resistance load (A)	Inductive load (A)
$125 \mathrm{CL} / \mathrm{DC}$	5.5	5.5
$250 \mathrm{AC} / \mathrm{DC}$	3	1.5

■ Mechanical Locking Device
The interlock system is configured to lock the VCB in the of position. To shut down the VCB either automatically or manually requires the VCB to be locked using the key. The key can only be removed after the VCB has been opened and locked. The VCB Nonnot be closed in this state
key will not be supplied by the manufacturer. In addition, note that this feature cannot be used together with the draw-out mechanism padlock device.

Table 6 Specifications of key for interlocking.
Manufacturer Castell Model FS1 Lock portion symbol User option Key rotation 90 degrees clockwise to trap Spigot dimensions $9.5 \mathrm{~mm}^{2} \times 22 \mathrm{~mm}$ long

■ Tripping Coil Disconnection Monitoring
Table 7 Disconnection monitoring current.

Type	Disconnection monitoring current
$10 / 15-$ VPR-25D/32D/40D	30 mA or below
$20-$ VPR-16D/25D	8 mA or below

The switch makes it possible to add 5a5b to a standard 5a5b contact number to create a 10 a 10 b arrangement (the additional auxiliary contact has no settings for micro current contact). It is also possible to create an 8 a 8 b configuration by adding 5 a 5 b to the standard 3a3b contact number through use of the optional additional shunt tripping coil.

Fig. 74

■ Additional Shunt Tripping Coil

Padlock Device for Close and Trip Button

This padlock board can be used to cover the VCB closing and tripping buttons and prevent manual switching operations. Note that users are not be supplied by the manufacturer.

8 Optional Accessories (2)

■ Position switch 3/6-VPR-D (Connected Position/Test and Disconnected Position)

■ Position switch 10-VPR-D, 10-VPR-50C(D), 20-VPR-25D 2500A

Output of the test and disconnected position as well as the connected position of the circuit breaker. (The test and disconnected position are only 10 -VPR-D.)The maximum output contact number is 2 C for the test and disconnected position and 4C for the connected position.

Fig. 79

■ Position switch 10-VPR-25D(M)

■ Position switch 20-VPR-D

8

8 Optional Accessories (3)

■ Short-circuit Capacity Earthing

Optional terminal

Conductors can be installed vertically and horizontally inside panels through use of horizontal and vertical terminals in the mounting frame terminal area.

Fig. 83

Shutter Padlock (10-VPR-D)

This padlock prevents release of the shutter in the mounting frame. Note that users are responsible for preparing a padlock ; a padlock will not be supplied by the manufacturer.

Fig. 84

■ Shutter Padlock (20-VPR-D)
This padlock prevents release of the shutter in the mounting frame. Note that users are responsible for preparing a padlock; a padlock will not be supplied by the manufacturer.

The shutter is close position
Fig. 85

8 Optional Accessories (4)

■ Earthing Switch (ES) (10-VPR-D)

This earthing switch is used to ground the main circuit part (lower side of the mounting frame). It enables simple safety checks at the time of maintenance and inspections.
Class E2 (40kA / 3s) Table 14 Coil ratings. Applicable standards: IEC 62271-102-2012 Rated voltage
 Ancessor

Fig. 86

Earthing Switch (ES) (20-VPR-D)

This earthing switch is used to ground the main circuit part (lower
side of the mounting frame). It enables simple safety checks at the side of the mounting frame). It enables simple safety checks at the time of maintenances and inspections
Class E2 (25kA / 3s)
Applicable standards: IEC 62271-102-2018
Accessories: Operating handle: 1 piece / 1-5 ES unit (s)
Not applicable to RoHS standard.
Table 15 Coil ratings.
Rated voltage Current flow

Table 16 Indication switch contact ratings \begin{tabular}{|c|c|c|}
\hline Rated voltage (V) \& Resistance load (A) \& Inductive load (A)

\hline $1254 C$ (

\hline

\hline $125 A C / D C$ \& 5.5 \& 5.5

\hline $250 \mathrm{AC} / \mathrm{DC}$ \& 3 \& 1.5

\hline
\end{tabular}

Table 17

9 Relevant Devices (1)

■ Surge Absorbing Capacitor (CR Suppressor) Sold Separately

\square Arresters (for $3.6 \mathrm{kV}, 7.2 \mathrm{kV}$) Sold Separately

This is a device to absorb the surge generated by switching.

OPrecautions
(1) Caution for circuits containing harmonics

As is the case with general high-pressure capacitors, please exercise caution when applying CR suppressors to circuits with higher harmonic waves. Particular care is required regarding multiple-orde
harmonic waves which may have flowed into circuits used for current control via the thyristor. When using a CR suppressor, set the effective value of resultant current with harmonic waves to the values shown in the table below (values are 1.3 times the rated value).
current of the harmonic wa

(2) How to install
nstall the CR suppressor vertically; do not install it horizontally or upside down.
(3) Caution for regular inspections

Bure to ground the secondary terminals of the CR suppressor before touching them.
(4) Caution for withstand voltage tests
2. Take care tuct a withstand voltage test after removing any wire connections.

Take care to ensure that test voltages and application times are correct. Depending on transforme
capacity, excessive current flow may prohibit the test from For withstand voltage tests where the panel includes a CR surpermed
disconnected from main circuit.
20 Acceptable test voltage of $C R$ suppressor

Type			CR-3	CR-6	CR-12	CR-15
Rated test voltage	AC	Between T-T	1 minute	6.6 kV	13.2 kV	24 kV
		7.6 kV	14.2 kV	28 kV	36 kV	
	Between T-C	10 minutes	4.95 kV	9.9 kV	18 kV	22.5 kV

(5) Recommended replacement period: 15 years

Type		CR-3	CR-6	CR-12	CR-15
Applicable circuit voltage (kV)		3.3	6.6	11	15
External dimensions (mm) *1	A	150	200	-	-
	B	237	337		
	c	16	20		
Capacitance ($\mu \mathrm{F}$)		0.05×3 phases	0.05×3 phases	0.1×3 phases	0.1×3 phases
Resistance (Ω)		100×3 phases			
Mass (kg)		8.5	10	31	33

Table 21 Ratings of Arrester

Brand name	Otowa GL arrester	
Usage	Indoor	
Type name	GLI-3G	GLI-6G
Rated voltage (kV)	4.2	8.4
Applicable circuit voltage (kV)	3.3	6.6
AC discharge startin voltage (kV crest)	6.3	12.6
Impulse discharge starting voltage (kV peak)	17	33
Official discharge current (A)	2500	2500
Mass (kg)	1.5	

Warning

9 Relevant Devices（2）

■ Lifter for 3／6－VPR－20D／25D 600A～1250A Sold Separately

■ Lifter for 20－VPR－16D／25D 630A～1250A（Types C，D and G）Sold Separately

■ Lifter（F－3C，F－3C＋Adapter for Type－M ：For 10－VPR－D）Sold Separately

9 Relevant Devices (3)
10
Interlocking Process for the Panel Door When Using Withdrawable with Door Closed (Type-M) Operation Mechanism

- Capacitor Tripping Device (CTD) Sold Spparatelv

This device makes it possible to trip the circuit breaker electrically within a fixed time via remote control even when the control power is out.

Fig. 95 Circuit diagram (KF-100E).

Fig. 96 Circuit diagram (KF-200CD)

Remarks

1. Capacitor tripping devices are mounted on the panel as standard
2. Mounting fixtures that enable instalation inside the panel are optional. The device can be installed facing the left, right, up or down according to the direction of the mounting fixtures.

Caution:

1. Please note that the KF-200CD output voltage is $140 / 155 \mathrm{VDC}$. It cannot be used to open circuit breakers with a tripping voltage of $200 / 220 \mathrm{VDC}$ and may cause an accident in this case. command.
2. The sole purpose of this device is tripping a VCB. Do not use for any other purpose
3. One device is required per VCB unit.
4. Recommended replacement period: 6 years

Through optional processing of the panel door, the VCB unit can be installed together with the following interlock function.

Interlock function with panel door

Function

VCB can only be moved when the panel door is VCB can only be m
in the closed state.
An insertion/draw-out handle (for type-M) can be used An insertion/draw-out handee (for type-M) can be used
to move the VCB after closing the panel door with the unlocking pin attached to the door
Unlocking pin must be installed

Example of processing procedure

■ 10-VPR-D

* In this example, the distance between the inside of the panel door and edge of the mounting frame is 53 mm .
- Install a $\phi 5 \mathrm{~mm}$ unlocking pin (figure below shows M 5 screw) in the position shown in the figure below (dimensions
$117 \mathrm{~mm}, 32.5 \mathrm{~mm}$.
- Use an unlocking pin with a length that enables it to be inserted in a position 11 mm from the edge of the mounting

20-VPR-D

-Install a $\varnothing 6 \mathrm{~mm}$ unlocking pin in the position shown in the figure below(demensitions $68 \mathrm{~mm}, 30.5 \mathrm{~mm}$)

- Use an unlocking pin with a length that enables to be inserted in a position 18 mm from the edge of the VCB.

11 Technical Information（1）

Operation Mechanism and Operating Principles

－Closing Operation
Fig． 100 shows the state where the circuit breaker is opened and the closing spring is discharged
Electrical（Closing）Operation
（1）When the power supply is connected，auxiliary relay 52 Y is excited via limit switch LS2 and the contact of auxiliary relay $52 Y$ closes，which then activates the motor via LS2，and the contact of auxiliary relay $52 Y$ starts to charge the closing spring．When the closing spring is completely charged，limit switch LS2 opens，the motor then stops and limit switch LS1 closes（the closed control circuit is formed）．
（2）By closing the closing command switch CS1 in this state，the closing coil CC is excited，the closing latch of the operating mechanism is released and the circuit breaker closes as a result of the energy from the charged closed spring．Through discharging the closed spring，LS2 is closed and LS1 is opened．
（3）When limit switch LS2 closes，the motor activates and charges the closing spring to prepare for the next closing （4）operation
When the circuit breaker is closed，circuit breaker auxiliary contact 52 b opens and shuts off excitation of closing co CC．At the same time auxiliary contact 52 a closes and forms a trip circuit of the shunt tripping coil STC and at the sam anti－pumping prevention）52X
－When Closing Commands are Consecutively Given While Charging Closed Spring
If consecutive closing commands are given to the closing operation switch CS1 while charging the closed spring （charge time of motor： 10 seconds or less）：limit switsh LS1 closes，the closing coil CC is excited，and the circuit breake
closes after completing the charging of the closing spring．

－Tripping Operation

（1）By closing the trip command switch CS2，the shunt tripping coil STC is excited，the engagement of the tripping latch at the operating mechanism is released and the circuit breaker opens．
（2）When the circuit breaker is opened（tripped），circuit breaker auxiliary contact 52a opens and shuts off excitation of STC to prepare for the next closing operation．

－Trip－free Operation

If the closing command and trip command are given simultaneously when the circuit breaker is in an opened state and the closing spring is in a charged state（closing preparation）：
（1）Operation takes place in the order of（2），（3），and（4）of the electrical（closing）operation．Then，because the trip command is being continued，operation（1）of the electrical（trip）operation occurs．
（2）Electrical（closing）operation（1）is returned but since the auxiliary relay $\mathbf{5 2 X}$ is continuously being excited，a close circuit is not formed by contact 52Xb and the circuit remains in the opened state．
（3）When performing the closing operation，it is necessary to release the closing command by closing command switch CS
and then restore auxiliary relay $\mathbf{5 2 X}$ ． and then restore auxiliary relay 52

■ Operation／Control Voltage（Current）
Table 25 Variation range of operation／control voltage

Items	Standard	JEC－2300	IEC－62271－100
Closing operation voltage （motor circuit）	DC	85～110\％＊	85～110\％
	AC		
Closing control voltage （closing circuit）	DC	75～125\％	85～110\％
	AC	85～110\％	
Opening control voltage （tripping circuit）	DC	60～125\％	70～110\％
	AC		85～110\％

《Closing control current》

Ss：Maximum fowng current at the time of discoonnection montioring
1 When VCB and faut indicator are combined，please perform operation check of VCB and faut indicator．
＜Opening control current》

Table 27 Motor operation control current and current－flow time for DC and AC（see Fig．102）．

Control voltage（v）		VDC																					VAC							
		24				48				100／110				125					200／220				100／110				2001220			
	Current（A），Time（s）			T，				${ }_{2} \mathrm{~T}_{1}$			12	T_{1}	T_{2}	1.				T_{2}	1,	1		T_{2}		$1 L_{1}$			$\mathrm{F}_{2} \mathrm{l}$			
	3／6－VPR－D	12	3.5	0.1	8	8	1.5	50.1	8		40.8	80.1		5	51	10.1		8	2	0.5	0.1	8		． 52	0.1			． 1.3	0.1	
	10／15－VPP－25D／32D／400	18	6.5	50.1	6	12		． 0.1	6		61.2	20.1			7.51 .5	1.50 .1	1	6	3.5	0.6	0.1	6	8.5	． 5	0.1	6	4.5	51.5	0.1	16
	10－VPR－50C（D）										61.5	50.1			7.51 .9	． 910		6		0.6	0.1	6			0.1	6	6.5	51.5	0.1	
	20．VPR－160／25，10－VPR－250（M）	12	3.5	0.1	8	8					40.8			5				8	2	0.5	0.1	8								
	20－VPR－25D（2500A）	18	6.5	0.1	6			． 0.1	6		61.2	20.1		7.5		1.50 .1		6	3.5			6		61.2	20.1			51.5		

$■$ Operation／Control Current Waveform for DC．

Fig． 101 Closing／tripping control current waveform． Operation／Control Voltage（Current） Table 28 Burden VA of closing coil and electrifying time for AC operation．

Fig． 102 Motor operation current waveform．

11 Technical Information (2)

Ratings and speciifications Type				$\begin{gathered} \text { 10/15-VPR-25D/32D/40D } \\ 10-\text {-VPR-50C(D) } \\ 20-\text { VPR-25D 2500A } \end{gathered}$
Rated insulation voltage (V)				250 AC/DC
Standard contact	Rated working voltage (V)			220 AC/DC
			100~125V AC	5 (power factor 0.3~0.4)
		AC	200~220V AC	4 (power factor 0.3~0.4)
	Rated		24~55V DC	6 (time constant 40ms)
		DC	100~110V DC	3 (time constant 40ms)
			200~220V DC	1 (time constant 40ms)
	Minimum		100 V AC /V DC	30
	(mA)	AC/DC	24 V AC / V DC	50
	Rated continuous current (A)			5
For micro current	Rated operational voltage (V)			125 AC/DC
	Rated	AC ratings	100~125V AC	1~500
		DC ratings	24~125V DC	1~500
		ontinuous cu		0.5

Table 31 Table of auxiliary switch ratings.

Classification as for Mechanical Endurance (M1 and M2)

The IEC standards broadly divide the mechanical operating test into classes M1 and M2. At the control voltages shown in Fig. 103, class M1 requires the rated operation sequence to be performed 2000 times in total while class M2 requires the rated operation sequence to be performed 10000 times in total. At five times the actuating cycle of class M1, class M2 represents a highly reliable operation class.
Table 32 M1 and M2 operating sequence.

Sequence	Control voltage	Actuating cycle	
		M2	
C-O	85%	500	2500
C-O	100%	500	2500
C-O	110%	500	2500
O-C-O	100%	250	1250

Fig. 103

Classification as for Electrical Endurance (E1 and E2)

Electrical endurance test that is specified in the IEC standards is broadly divided into classes E1 and E2. Class E2 has a longer breaking times than class E1, and is a highly reliable class due to huge energy arcs.

Testing current (percentage of rated shor-t-circuii breaking current)	Operating sequence	Number of operating sequence	
		E1	E2 ${ }^{(*)}$
10\%	O-CO-CO	1	1
30\%	O-CO-CO	1	1
60\%	0	-	15
	o-co-co	1	15
$\begin{gathered} 100 \% \\ \text { (symmetry) } \end{gathered}$	O-CO-CO	1	2
$\begin{gathered} 100 \% \\ \text { (asymmetry) } \end{gathered}$	O-O-O	1	-

* Class E2 contains the number of breaking test of class E1.

Fig. 104

Probability of Restrike during Capacitive Current Switching (C1 and C2)

Performance in capacitive current swiching test is broadly divided into classes C 1 and C 2 ; class C 2 is highly reliable.
Class C1: Low probability of arc restrike at the time of capacitive current switching test (2 restrikes are allowed during 0
Class C2: Very low probability of arc restrike at the time of capacitive current switching test (Restrikes is not allowed during O 24 operations and CO 24 operations).
*Arc restrike is the phenomenon that occurs when current flows later than a $1 / 4$ of a cycle after zero when there are insufficiencies in the VCB
arc extinction or in insulation stress between VCB poles for recovery voltage.

12 Applicable Standards (1)

1 Operating Environment and Application

	Table 34 Normal service conditions.		
VPR series are designed and manufactured as an indoor unit and comply with JEC-2300 (AC circuit breakers) and IEC 62271-100. Accordingly, these VCBs require a normal service conditions specified in Table 34. Furthermore, sufficient maintenance and inspections must be performed in accordance with the VCB instruction manual. Please consult the manufacturer regarding operation of VCBs under special conditions.		Ambient temperature	$-5^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$ (The average temperature for 24 hours m not exceed 35°.)
		Influence of solar radiation	be no influence of sod
	3	Altitude	1,000m or lower
- Caution for Installation Site and Surrounding Environment The VCB service conditions must comply with the specifications shown in Table 34. Do not use the VCBs in environments that do not meet these conditions. For use in outdoor panels and special environments where there is excessive dust, corrosive gas, water/condensation or abnormal vibration/shock, be sure to take appropriate countermeasures. Non-adherence to these cautions may result in damage to the products or degraded performance in areas such as switching, current carrying capacity and insulation.		Powde	There must be no excessive powder dust. (As a guideline, the powder dust should be $2 \mathrm{mg} / \mathrm{m}^{3}$ or less.)
		Humid	Relative humidity: 45-85\% There must be no dew conden
	6	Vibratio	e must be no excessive vibration.
		Degree of pollution	There must be no pollution. (As a guideline, the equivalent salt deposit density should be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$.)
		Pois	There must be no corrosive gas.

Application of Surge Protection Device

Table 35 outlines surge protection standards for the load circuit. Please use this table as a reference when selecting VCB types for actual applications.

- Surge Protection Standards

Type Load device	Generator	Mot	transtormer	Oilltransormer	Mitsubishi Electric molded transforme	Phase-aduanced capapitor
$3 / 6$-VPR-D (General purpose product)	CR suppressor used		General purpose * arrester used	Not required ${ }^{1,4}$	Not required ${ }^{2,4}$	Not required
$\begin{gathered} \text { 3/6-VPR-D } \\ \text { (Low-surge product) } \end{gathered}$	Not reauired ${ }^{4}$					
Other than the above	CR suppressor used		General purpose *1 arrester used	Not reauired ${ }^{1}$	General-purpose *2 arrester used	Not required

11: To directly switch the semiconductor rectifier unit (for example, a electric power thyristor rectifier unit) to the secondary side of a
transformer, use a transformer with a contact-protective plate. Use a general-purpose arrester on the primary side and the surge protective device (such as a filter capacitor) on the secondary side.
2: Avoid interuupting the no-load excitation innush current of a mol
of a molded transformer oil transformer. When such current must be interrupted, use a genera
consult the manufacturer.
3:For motors in applications where inching operation is frequently performed and inching is the predominant switching duty (cranes, conveyors, etc.), use a CR suppressor.
Mitsubishi molded transformer and oil transformer are for 6 kV with the impulse withstand voltage 60 kV and for 3 kV with the impulse
Surge Voltage for Breaking Curren
Surge voltage at the time of interrupting current generally includes the current chopping surge when interrupting an inductive small current. If small current is interrupted by a switch that is superior in arc extinction capacity like the is called the current chopping phenomenon the time of inductive small current breaking.
It is possible to calculate the current chopping surge voltage by the following general equations.

Circuit conditions	Surge voltage equation
(1) Without reverse voltage (inching switching of transformer circuit/motor)	$E s=\sqrt{E^{2}+(\eta \times \sqrt{L m / C m} \times I c)^{2}}$
(2) With reverse voltage (motor switching of the constant - velocity drive)	$E s=E+\eta \times \sqrt{L m / C m} \times I c$
Es : Surge voltage (peak value) E : Power voltage to ground (peak value) η : Attenuation coefficient (for transformer: approx. 0.65 , for motor: 0.85)	$L m$: Inductance of load circuit including a transformer or motor Cm : Earth capacity of load circuit including a transformer or motor Ic : Chopping current

E : Power voltage to ground (peak value)
η

- Application to the Capacitor Circuit

Although a capacitor circuit can be used, please exercise caution in regard to the following:
Before re-closing the capacitor, make sure the capacitor is fully discharged to prevent the risk of overvoltage being generated.

- Application to the Different System Butt Welding Circuit (Excluding 20-VPR-D 630/1250A) Application to different-system circuits
Application to different-system circuits is possible. In this case, it is necessary to shorten the maintenance inspection and cleaning cycle because the voltage added between VCB poles will be higher than under normal conditions. A more frequent maintenance and inspection cycle is especially important in environments where there is pollution or high humidity.

Caution for Korndorfer Start Circuit

For a korndorfer start, a neutral point release of the auto-transformer should be conducted after the start current is ompletely diminished.
 ransformer specified in "power transformer (JEC-2201)."

Application to Electric Furnace Circuit (Excluding 10-VPR-50C(D), 20-VPR-D)
Aigh frequency switching of the circuit breaker for an electric furnace increases the possibility of generating a都 beaker with a rated voltage in one of the top classes.

12 Applicable Standards (2)

Service Life and Applications
The service life of VCBs is specified in terms of the vacuum service life of VI , as well as the electrical and the mechanical service lives.

Vacuum Service Life of VI

The high vacuum of the VI in the VCB ensures interrupting and insulation characteristics. It is very important that this vacuum be maintained.
Sur Vls are manufactured on our advanced production line and provide safe, long term use guaranteed by our original method of service life testing and control. Vacuums can be inspected simply as part of regular inspections via the withstand voltage method

Electrical Service Life of VI (see Table 36)
The electrical service life of a VI is determined by the electrode consumption and the number of switchings. For VPR-D, the service life can be determined by the number of load switchings, because the electrode consumption is extremely small. Therefore, it is

- Mechanical Service Life
his can be determined by the operation counter provided in the VCB (provided in all types as standard specification),
the estimated service life is its mechanical service life or its specified operation count, it is necessary to replace the VCB.
Table 36 Switching service lives
Type

VPR series

\qquad Load switching service life (times) Mechanical switching service life (times)
1: Values shown in the table above are based on the continuous switching test and apply to the short term; they are not guaranteed in the long term. To ensure optimum pertormance, please follow the maintenance and inspection procedures described in the instruction manual.

Breaking current (kA)
Fig. 106 Breaking service life criterion for breaking current.(10-VPR-D)

1 Maximum applicable full-load current (A) is for a single breaker.

Polarity in Connecting to Main Circuit

It is unnecessary to classity the polarity in the power//load sides when connecting the main circuit of the VCB.
Electrical or mechanical performance is not changed regardless of whether it is connected to the power side of load side.)
Calorific Value
The contact resistance and calorific value of each rated current are shown. Use this as a reference when selecting models
Table 39 Contact resistance and calorific value of each rated current.

Type	Rated current (A)	Contact resistance $\operatorname{Rc}(\mu \Omega)$ between (1) and (2)*	Calorific value (W) / three phases	
3/6-VPR-20D/25D	630	82	99	
	1250	60	328	
3/6-VPR-20DG/25DG	630	88	105	
	1250	73	342	
10-VPR-25D(M)	600/630	106	126	
	1200/1250	79	370	
10-VPR-25D/32D	$\begin{gathered} 600 / 630 \\ 1200 / 1250 \end{gathered}$	72	338^{*}	
15-VPR-32D $1015-\mathrm{VPR}-40 \mathrm{D}$	$\begin{gathered} 600 / 630 \\ 1200 / 1250 \end{gathered}$	63	296**	
10/15-VPR-D	1600/2000	42	504	
10-VPR-D	3000/3150	24	715	
20-VPR-16D	600/630	88	105	
20-VPR-25D	600/630	99	118	
20-VPR-16D	1200/1250	65	305	
20-VPR-25D	1200/1250	62	291	
20-VPR-25D	2000	39	468	
$\frac{\text { 20-VPR-25D }}{\text { 10-VPR-50C(D) }}$	2500 4000	38 33	600 1584	
10-VPR-50C(D)	4000	33	1584	

Fig. 108

12 Applicable Standards (3)

■ Lifting the VCB

Lift the VCB using the mounting holes as shown below.

Do not lift VCBs while they are inserted in the mounting frame. When lifting the VCB or mounting frame, please refer to the instruction manual and follow the specific conditions provided.

Shipping Clamps (10-VPR-D)

When a switchgear is supplied with the mounting frame and VCB (in test position), it is necessary to mount the frame and VCB on the switchgear. Follow the directions in the instruction manual and the accessories section of this catalog (page 38) to mount the devices using screws (M10) in the positions shown in the figure.

- Altitude

When using the VCB in altitudes over $1,000 \mathrm{~m}$ above sea evel, the insulation withstand level is reduced due to make crom the standard ambient conditions. To make corrections for altitude, please confirm and insulation withstand levels for higher altitude as listed in IEC 62271-1-2011

For installations at an altitude 2500 m , if VCB is required with BIL 75 kV , VCB with BIL 95 kV should be used accordance with Figure 113. " 75 multiplied by 1.2 is 90 ."

- Recommendations for VCB Maintenance
1.Standards for the replacement of parts

Replace parts according to the following schedule (applies to all types) to ensure reliable operation for the full term of the service life (20 years).

Fig. 113

Part		Replacement standard		Reason for replacement
		Actuating cycle	Usage period	
Dumper		5000	6 years	Degradation over time
Auxiliary switch		5000	$\begin{aligned} & 10-15 \\ & \text { years } \end{aligned}$	Preventive maintenance
Motor		5000		
Limit switch		5000		
VI	Switching service life of the rated short-circuit breaking current	10 times*1	-	Electrical service life
	Insulation performance	When defectis occur in vacuum and withstand volage		Degradation

2.Types of inspections

Table 41 Maintenance and inspection cycle.

Maintenance and inspection classification	Maintenance and inspection cycle	
	Normal environment	Substandard environment (especially dew condensation, salt and powder dust)
Patrol inspection	6 months	1 month
Periodic inspection	First time: 1-2 years Second time and later: 3 years	1-2 years
Detailed inspection	6 years	$2-4$ years
Special inspection	Maintenance and inspection cycle	

1: Please replace a VCB when the number of switching operations reaches 10000 times.
2: Please consider replacing the product after 20 years of use under normal environmental conditions.
3.VCB Replacement Condition

VCBs are recommended for replacement when any of the following conditions are true:

1. Twenty years have passed since manufacture.
2. Switching service life has expired (see page 61).
through repair of parts.
Make sure to refer to the instruction manual before inspection.

13 Ordering Information (1)

Standard Table 42 3/6-VPR-20/25D

Caution: : When the tipping poweri is AC and the capacitior tripping decive (CTD) is selected, select $100-125 \mathrm{~V}$ tor the tripping contol voltage (15).

Example for Order No.

OVR25DMID 12 I10B0000 (minouropionara accessores)
OVPR25D MID 12110 B000APB (with mecharical ocking device and padock device for close and tip butto

13 Ordering Information（2）

Standard Table 45 10／15－VPR－D

缘	${ }_{\text {Rated }}^{\substack{\text { Ratage }}}$	Type	$\begin{gathered} \text { Rated } \\ \text { soroticirit } \\ \text { sherekin } \\ \text { current } \end{gathered}$	Seies	asisiaion	Standards	Mancing	Rated current	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { coparito } \\ \text { volatae }} \end{array}$	$\begin{array}{\|c} \substack{\begin{subarray}{c}{\text { Triping } \\ \text { contrage }} }} \\ {\text { cotage }} \end{array}$	$\underbrace{\substack{\text { sitioh }}}_{\text {Postion }}$	Seconday	Auxiliay		Mounting	Onional
	${ }_{12 \mathrm{kV}}^{10}$	VPR	$\underset{25 \mathrm{ka}}{2}$	－	${ }_{\text {Class E1 }} 1$			${ }_{6}^{0} 6$	$\begin{gathered} 1 \\ \hline \text { von } 125 \\ \text { vaCNDC } \end{gathered}$	$\begin{gathered} 1 \\ \substack{100-125 \\ \text { voc }} \end{gathered}$	$\frac{0}{x}$	$\underset{\substack{\text { Codeat } \\ \text { Whtiout } \\ \text { ninerock }}}{A}$	$\underset{\substack{0 \\ \text { sinararad } \\ \text { (nasb) }}}{ }$	$\underset{\times}{0}$		$\underset{\times}{0}$
			$\begin{array}{\|l\|l\|} \hline 3 & 2 \\ \hline 31.5 \mathrm{kA} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 2 \\ \text { Class E2 } \end{array}$			$\sqrt{122}$	$\underset{\substack{202(2020 \\ \text { vacroc }}}{\substack{2 \\ \text { vacko }}}$	$\underset{\substack{\text { 200202 } \\ \text { voc }}}{2}$				$\frac{1}{\operatorname{win} 10}$	$\underset{\substack{\text { withour } \\ \text { motring } \\ \text { trane }}}{\mathbf{X}}$	$\underset{\substack{\text { with } \\ \text { opional }}}{\mathbf{A}}$
			$\frac{40}{40 \mathrm{KA}}$					（166	$\underset{\text { 24VOC }}{7}$	$\stackrel{7}{7}$						
								$\underset{2000}{20}$	$\underset{48 \mathrm{VDC}}{8}$	$\underset{48 \mathrm{VDC}}{8}$						
									$\begin{array}{\|l\|l} \hline 1 & 1 \text { is standard. } \\ 2 & \\ \hline 7 & \text { 2, } 7 \text { and } 8 \\ 7 & \text { will be manufactured } \\ 8 & \text { upon receipt of order } \\ \hline \end{array}$							
Caution：－Rated short－circuit breaking current of 40 KA with E 2 class cannot be manufactured －Withdrawable with door closed（type－M）is not compatible with mounting configuration class CW ． －When selececting J HCC 2300 －20n for standard select class $E 1$ for classification 9 al When selecting JEC 2300－200 for standard，select class E1 for classification ©																

Optional Accessories Table 46 Code description chart（special specifications）

${ }_{\text {Rated }}^{\substack{\text { Ratage }}}$	Type	$\begin{gathered} \text { Rated } \\ \substack{\text { shorticicuit } \\ \text { Berakn } \\ \text { current }} \end{gathered}$	Series	Classifation	Standards	Manine	Rated current	$\begin{gathered} \text { colosing } \\ \text { coparifor } \\ \text { poation } \\ \text { voltage } \end{gathered}$	$\begin{aligned} & \text { Tifiping } \\ & \text { contan } \\ & \text { coftage } \end{aligned}$	Position	Seanday	Auxiliay	
$\underbrace{10}_{12 \mathrm{kV}}$	VPR	$\underset{50 \mathrm{kA}}{50}$	C（D）	$\square_{\text {Standard }}$	$\underset{\substack{\text { J¢C } \\ \text { 200（198）}}}{\text { J }}$		4 4000A	$\underset{\substack{\text { 100, } \\ \text { vaciva }}}{1}$	$\underset{\substack{1001225 \\ \text { covc }}}{1}$	$\underset{\times}{0}$	$\underset{\substack{\text { codeA } \\ \text { contiout } \\ \text { inelock }}}{\mathbf{A}}$		$\underset{\times}{0}$
						D			$\underset{\substack{201220 \\ \text { voc }}}{2}$				$\underbrace{}_{\text {win } 16}$
										（			

13 Ordering Information (3)
Standard Table 48 20-VPR-D
(1) (2) (3)(4)(5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)

${ }_{\text {Fatad }}^{\substack{\text { falage }}}$	Type		Sele	costraim	Sanalas	Matime	Raled curen			Position	Seman	Ansilan			atimed
$\underset{244 \mathrm{~V}}{200}$	vPR		-			\mathbb{M}	$\underset{630 A}{06}$			$\frac{0}{0}$		$\underset{\substack { \text { sinatad } \\ \begin{subarray}{c}{0 \\ \text { Sasp }{ \text { sinatad } \\ \begin{subarray} { c } { 0 \\ \text { Sasp } } }\end{subarray}}{ }$	$\frac{0}{0}$		$\frac{0}{x}$
		$\frac{25}{25 \mathrm{~A}}$					$\xrightarrow{712}$		$\underset{\substack { 202 \\ \begin{subarray}{c}{20200 \\ \text { vicc }{ 2 0 2 \\ \begin{subarray} { c } { 2 0 2 0 0 \\ \text { vicc } } }\end{subarray}}{ }$			\sqrt{s}	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \end{array}$	$\underset{\substack{\text { wimpur } \\ \text { nump } \\ \text { tanan }}}{ }$	$\underset{\substack{\text { wim } \\ \text { onima }}}{\boldsymbol{A}}$
								${ }_{24}^{740 \mathrm{C}}$	$\stackrel{7}{24 \mathrm{VOC}}$						
						G		${ }_{4}^{88}$							

Example for Order No.
20VPR25D1112 2110 B0000
20VPR25D 110121108000 AP

[^0]: *1 Rated short-circuit breaking current of 40KA with E class cannot be manutactured.
 And basic impulse level (BLL) with rated voltage 12 kV has BLIT 75 kK (Classification

